ScienceDaily (June 27, 2012) ? Scientists are reporting an advance toward treating disease with minute capsules containing not drugs -- but the DNA and other biological machinery for making the drug. In an article in ACS' journal Nano Letters, they describe engineering micro- and nano-sized capsules that contain the genetically coded instructions, plus the read-out gear and assembly line for protein synthesis that can be switched on with an external signal.
Daniel Anderson and colleagues explain that development of nanoscale production units for protein-based drugs in the human body may provide a new approach for treating disease. These production units could be turned on when needed, producing medicines that cannot be taken orally or are toxic and would harm other parts of the body. Until now, researchers have only done this with live bacteria that were designed to make proteins at disease sites. But unlike bacterial systems, artificial ones are modular, and it is easier to modify them. That's why Anderson's group developed an artificial, remotely activated nanoparticle system containing DNA and the other "parts" necessary to make proteins, which are the workhorses of the human cell and are often used as drugs.
They describe the nanoscale production units, which are tiny spheres encapsulating protein-making machinery like that found in living cells. The resulting nanoparticles produced active proteins on demand when the researchers shined a laser light on them. The nanoparticles even worked when they were injected into mice, which are stand-ins for humans in the laboratory, producing proteins when a laser was shone onto the animals. This innovation "may find utility in the localized delivery of therapeutics," say the researchers.
The authors acknowledge funding from the Misrock Foundation, the Life Sciences Research Foundation, the National Cancer Institute, the National Institutes of Health and the Marie D. & Pierre Casimir-Lambert Fund.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by American Chemical Society.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Avi Schroeder, Michael S. Goldberg, Christian Kastrup, Yingxia Wang, Shan Jiang, Brian J. Joseph, Christopher G. Levins, Sneha T. Kannan, Robert Langer, Daniel G. Anderson. Remotely Activated Protein-Producing Nanoparticles. Nano Letters, 2012; 12 (6): 2685 DOI: 10.1021/nl2036047
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
the scream stephen colbert new madrid fault rihanna and chris brown affirmative action helicon zac efron and taylor swift
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.