Wednesday, March 13, 2013

Mars rover sees key water indicator

The US space agency (Nasa) has reported that its Curiosity rover has made another significant discovery on Mars.

The robot has drilled into a rock that contains clay minerals - an indication of formation in, or substantial alteration by, neutral water.

Scientists say the find is one more step towards showing conditions on the Red Planet in the distant past could have supported life.

Many rocks studied previously were probably deposited in acidic water.

While this would not have precluded the possibility of micro-organisms taking hold on Mars, it would have been more challenging, scientists believe.

Identifying clays shows there were at least some locations on the planet billions of years ago where environments would have been much more favourable.

"We have found a habitable environment that is so benign and supportive of life that probably if this water was around and you had been there, you would have been able to drink it," said John Grotzinger, Curiosity's project scientist.

Michael Myer, Nasa's Mars exploration programme: "Right off the bat, we find evidence of water"

Ancient lake

The rover drilled a powdered sample from a mudstone at its exploration site in Gale Crater, a deep impact bowl on Mars' equator.

This was delivered to the two big onboard laboratories, Sam and Chemin, for analysis.

The rock sample was found to contain 20-30% smectite - a particular group of clay minerals.

Their high abundance and the relative lack of salt are strongly suggestive of a fresh-water environment for the mudstone's formation.

The presence of calcium sulphates, rather than the magnesium or iron sulphates seen in previous rock analyses at other locations on the planet, adds to the evidence that the sampled rock in Gale was deposited in a neutral to mildly alkaline pH environment.

Scientists think Curiosity probably drilled into an ancient lakebed.

Aqueous catalogue

The analysis also identified sulphur, nitrogen, hydrogen, oxygen, phosphorus and carbon - some of the key chemical elements for life.

Additionally, it found compounds in a range of oxidised states, meaning there were electrons moving through the environment. Those could have been co-opted as an energy source by simple life-forms, if they ever existed in Gale.

"What we've learned in the last 20 years of modern microbiology is that very primitive organisms - they can derive energy just by feeding on rocks," explained Prof Grotzinger.

"Just like on [a] battery - you hook up the wires and it goes to a lightbulb and the lightbulb turns on. That's kind of what a micro-organism would have done in this environment, if life had ever evolved on Mars and it was present here."

The rover is assembling quite a catalogue of water evidence in the crater.

Already, it has seen the remains of an ancient riverbed system, where water once flowed perhaps a metre deep and quite vigorously.

The picture that seems to be emerging is one where sediments were transported downhill from the eroding crater rim into a network of streams that then flowed into the lake environment represented by the mudstone.

Quiet April

Curiosity is currently working in a small depression known as Yellowknife Bay, about half a kilometre from the location where it touched down last August.

Nasa's original mission plan was to head towards the big mountain that dominates the centre of Gale Crater, but the fascinating science at Yellowknife Bay has delayed this journey somewhat.

In recent days, operations have been slowed by a software glitch, requiring the vehicle to be run off its reserve computer.

There is also the imminent issue of solar conjunction, which will see Mars move behind the Sun as viewed from Earth, blocking communications.

All this means that Curiosity will be at Yellowknife Bay for a while yet.

"Basically, we can't talk to the rover and the rover [can't] talk to us for most of the month of April," said Michael Meyer, the lead scientist on Nasa's Mars exploration programme.

"We'll do some more science activities through the end of this month, [provided] the engineers confirm it's safe for us to do those operations. But we will not do a second drill hole until after solar conjunction."

When the rover does finally get to the mountain, known as Mount Sharp, the expectation, based on satellite imagery, is that it will again find clay minerals.

This will enable the robot to compare and contrast past environments.

The US space agency's Opportunity rover, which continues to work nine years on from its landing, is also believed to be sitting on top of clay-bearing rocks at its exploration site far to the west of Gale. Opportunity, however, does not have Curiosity's capability to assess those rocks.

Jonathan.Amos-INTERNET@bbc.co.uk and follow me on Twitter: @BBCAmos

Source: http://www.bbc.co.uk/news/science-environment-21755976#sa-ns_mchannel=rss&ns_source=PublicRSS20-sa

bill rancic nflx chicago blackhawks giuliana rancic giuliana rancic elie wiesel temptations

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.